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Abstract: A fully functionalised synthesis of taxol A-ring, through Michael/Wittig
reaction and regioselective opening epoxide as key steps and also a methodology for

substituted cyclohexadienes through tandem Michael/Wittig reaction is described.
© 1997 Elsevier Science Ltd.

Taxol, a substance originally isolated' from the Pacific yew tree Taxus brevifolia, more than two
decades ago, has recently been approved for the clinical treatment of cancer and is considered as one of the
most significant advances in chemotherapy. This molecule exerts its anti cancer activity by inhibiting mitosis
through enhancement of the polymerisation of tubulins and consequent stabilization of microtubules. The
scarcity of Taxol and the ecological impact of harvesting it have prompted an extensive search for alternative
sources including semisynthesis, cell culture and chemical synthesis. Apart from its activity, it has gained
prominence owing to its extremely complex structure with a plethora of functionalities, prominently the
bridgehead olefin in ring A, highly functionalized ring B and the very sensitive oxetane ring D fused to ring
C. Several strategies towards taxol synthesis proceeding from A to ABC rings have been reported.>* Herein,
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we report a strategy proceeding from right to left (C to A ring), to the functionalised tricyclo (9,3,1,0)
pentadecene skeleton of taxol making use of the Michael/Wittig and pinacol coupling as the key steps. The
retrosynthetic analysis is depicted in scheme 1 where in the functionalised A ring of the key intermediate
can be elaborated from a Michael/Wittig reaction of the fragment 4 with the fragment 5.
This communication details, our efforts towards the synthesis of substituted cyclohexadienes and its
further transformation into fully functionalised A ring of taxol* (scheme.2)
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Ethyl acetoacetate was condensed with acetone in the presence of ZnCl, and Ac,0 to furnish 4
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which was reacted with the allyl anion generated from the allyl Wittig salt by reaction with n-BuLi to afford
8. The compound 8 was then converted to the aldehyde in a two step sequence and isomerised using DBU to
afford the conjugated aldehyde 9. The aldehyde 9 was converted to alcohol which was protected as its MOM
ether 10. Epoxidation with mCPBA followed by MOM deprotection using PTSA/MeOH afforded the less
substituted epoxide 11. Regioselective opening of the epoxide using LAH conditions afforded 12. The
primary alcohol was protected as its acetate and the secondary alcohol functionality oxidised under Swern
conditions to the ketone and protected as its ketal using PTSA/ethylene glycol afforded 13. Finally oxidation
of 13 using SeO, afforded the functionalised A ring*14.

In the above scheme 2, the second step is the tandem Michael/Wittig reaction. Even though it was
reported by Alkonyi et al (1967) and Wuest et al (1971),° as an extension of their method, here, we have
carried out a reaction with substituted allylbromide Wittig salt to give a substituted cyclohexadiene which
would serve for the functionalisation of C, of taxol. Thus crotyl bromide Wittig salt, treated with n-BuLi at
0 °C with 5 afforded the substituted cyclohexadiene in excellent yield. In order to generalise the reaction and
check the functional group compatibility, different allylbromide Wittig salts were prepared and subjected to
Michael/Wittig reaction and the corresponding cyclohexadienes were obtained in good yields.S (Table)

The possible mechanism is depicted in scheme 3. The generated allyl anion undergoes Michael
addition with compound 4 to give the intermediate 15 and it further rearranges® through 1,5 sigmatropic shift
may afford the phosphonium betaine, proton transfer to the ylide followed by intramolecular Wittig
condensation could afford the substituted cyclohexadienes.
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Thus, in conclusion it has been amply demonstrated that this new strategy definitely helps to make
analogues of taxol. Based on the above strategy the synthetic studies on taxol are currently underway in our

iaboratory.
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